Adomian Decomposition Approach for Solving the Two-Dimensional Fractional Advection-Diffusion Equation

Authors

  • Shankar Pariyar Central Department of Mathematics, Tribhuvan University, Kirtipur, Kathmandu, Nepal & Tri-Chandra Multiple Campus, Tribhuvan University, Kathmandu, Nepal
  • Eeshwar Prasad Poudel Tri-Chandra Multiple Campus, Tribhuvan University, Kathmandu, Nepal
  • Jeevan Kafle Central Department of Mathematics, Tribhuvan University, Kirtipur, Kathmandu, Nepal
  • Dhan Raj Char Central Department of Mathematics, Tribhuvan University, Kirtipur, Kathmandu, Nepal

DOI:

https://doi.org/10.3126/jist.v30i2.82723

Keywords:

Adomian Decomposition, Anomalous Diffusion, Fractional Calculus, Pollutant Dispersion.

Abstract

This work focuses on improving the modeling of pollutant dispersion in environment where traditional diffusion approaches are inadequate, such as the Kathmandu valley. Motivated by the need for accurate predictions under stagnant atmospheric conditions, especially during winter, this study addresses the limitations of classical models that fail to capture memory effects and slow pollutant spread. A time-fractional advection-diffusion equation (FADE), incorporating fractional derivatives to represent non-classical diffusion is utilized. The Adomian Decomposition Method (ADM) is applied to derive an approximate analytical solution. The results reveal that lower fractional orders depict slower, sub-diffusive transport, whereas higher orders transition toward classical diffusion behavior. This approach effectively models the anomalous dispersion patterns observed in complex terrains, offering an enhanced framework for air quality assessment in situations where traditional methods are inadequate.

Downloads

Download data is not yet available.
Abstract
0
PDF
0

References

Acharya, A. (2024). The political ecology of urban expansion and air pollution in Kathmandu. Journal of Development Review, 9(1), 1-18. https://doi.org/10.3126/jdr.v9i1.69035.

Ahmed, S., & Haq, S. (2024). Grünwald-Letnikov discretization for 2D fractional advection-diffusion equations in complex domains. Journal of Computational and Applied Mathematics, 435, 115301-115301. https://doi.org/10.1016/j.jcp.2015.04.048.

Berkowitz, B., & Scher, H. (1998). Theory of anomalous chemical transport in random fracture networks. Physical Review E, 57(5), 5858-5869. https://doi.org/10.1103/PhysRevE.57.5858.

Gao, Y., & Liu, W. (2023). Adaptive finite element methods for 2D fractional diffusion in heterogeneous media. Journal of Computational Physics, 487, 112153-112153. https://doi.org/10.1016/j.cma.2024.116966.

Liu, Y., Zhao, Y., Lu, W., Wang, H., & Huang, Q. (2019). ModOdor: 3D numerical model for dispersion simulation of gaseous contaminants from waste treatment facilities. Environmental Modelling & Software, 113, 1-19. https://doi.org/10.1016/j.envsoft.2018.12.001.

Mahapatra, P. S., Puppala, S. P., Adhikary, B., Shrestha, K. L., Dawadi, D. P., Paudel, S. P., & Panday, A. K. (2019). Air quality trends of the Kathmandu Valley: A satellite, observation and modeling perspective. Atmospheric Environment, 201, 334-347. https://doi.org/10.1016/j.atmosenv.2018.12.043.

Metzler, R., & Klafter, J. (2000). The random walk’s guide to anomalous diffusion: A fractional dynamics approach. Physics Reports, 339, 1-77. https://doi.org/10.1016/S0370-1573(00)00070-3.

Montroll, E. W., & Weiss, G. H. (1965). Random walks on lattices, II. Journal of Mathematical Physics, 6(2), 167–181. https://doi.org/10.1063/1.1704269.

Odibat, Z. (2023). Fractional calculus in pollutant transport modeling. Chaos, Solitons & Fractals, 166, 112901. https://doi.org/10.1016/j.chaos.2022.112901.

Pariyar, S., & Kafle, J. (2023). Caputo-Fabrizio approach to numerical fractional derivatives. Bibechana, 20(2), 126–133. https://doi.org/10.3126/bibechana.v20i2.53971.

Pariyar, S., & Kafle, J. (2022). Approximation solutions for solving some special functions of fractional calculus via Caputo–Fabrizio sense. Nepal Journal of Mathematical Sciences, 3(2), 1–10.

Pariyar, S., & Kafle, J. (2024). Generalizing the Mittag-Leffler function for fractional differentiation and numerical computation. Nepali Mathematical Sciences Report, 41(1), 1–14. https://doi.org/10.3126/nmsr.v41i1.67446.

Pariyar, S., & Kafle, J. (2025). Fractional advection-diffusion equation with variable diffusivity: Pollutant effects using Adomian Decomposition Method. Applied Mathematics E-Notes. 275-285. http://www.math.nthu.edu.tw/~amen/.

Pariyar, S., Lamichhane, B. P., & Kafle, J. (2025). A time fractional advection-diffusion approach to air pollution: Modeling and analyzing pollutant dispersion dynamics. Partial Differential Equations in Applied Mathematics, 14, 101149. https://doi.org/10.1016/j.padiff.2025.101149.

Yadav, S., Kumar, P., & Singh, R. (2024). Wavelet-based numerical solutions for time-fractional convection-diffusion equations. Fractional Calculus and Applied Analysis, 27(1), 150–175.

Downloads

Published

2025-12-23

How to Cite

Pariyar, S., Poudel, E. . P., Kafle, J., & Char, D. R. (2025). Adomian Decomposition Approach for Solving the Two-Dimensional Fractional Advection-Diffusion Equation. Journal of Institute of Science and Technology, 30(2), 183–188. https://doi.org/10.3126/jist.v30i2.82723

Issue

Section

Research Articles