Plant-Mediated Zinc Oxide Nanoparticle and Copper Doped Zinc Oxide Nanocomposite for Photocatalytic Degradation of Methylene Blue Dye

Authors

  • Pratikshya Pokhrel Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu, Nepal
  • Armila Nyachhyon Rajbhandari Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu, Nepal

DOI:

https://doi.org/10.3126/jist.v30i2.84888

Keywords:

Cu-ZnO, Green synthesis, Methylene blue, Photocatalytic, degradation, ZnO

Abstract

Green synthesis of zinc-oxide (ZnO) nanoparticles and copper-doped zinc oxide (Cu-ZnO) nanocomposites were carried out by treating zinc nitrate and copper nitrate precursors with aqueous extract of Cinnamomum camphora leaves powder. X-ray diffraction spectroscopy (XRD), Fourier transform infrared spectroscopy (FTIR), Scanning electron microscopy (SEM), and UV-visible spectrophotometry have been used to characterize the prepared materials. XRD analysis showed that both materials are crystalline in nature. The average crystallite size of ZnO and Cu-ZnO was found to be 21 nm and 17.51 nm, respectively. The FTIR spectra displayed clear bands of ZnO at 508.1 cm-1. The SEM image demonstrated crystalline circular patch like morphology for both nanoparticles and the UV-visible spectra displayed a characteristic absorption band at 378 nm for ZnO and 382 nm for Cu-ZnO. The synthesized ZnO nanoparticles and Cu-ZnO nanocomposites have been used to degrade methylene blue (MB) under UV light. Cu-ZnO nanocomposites showed 98 % MB degradation within 240 minutes at pH 10 while only 90 % MB dye was degraded by ZnO nanoparticles. Results revealed that the optimum catalyst dose was 30 mg and dye concentration was 5 mg/L along with 0.4 mL of 1% H2O2. In this study, it has been demonstrated that Cu-doped ZnO displayed excellent photocatalytic efficiency towards degradation of dye within a short period of time even in low concentration.

Downloads

Download data is not yet available.
Abstract
0
PDF
0

References

Alharthi, F.A., Alghamdi, A.A., Alothman, A.A., Almarhoon, Z.M., Alsulaiman, M.F., & Al-Zaqri, N. (2020). Green synthesis of ZnO nanostructures using Salvadora persica leaf extract: applications for photocatalytic degradation of methylene blue dye. Crystals, 10(6), 441. https://doi.org/10.3390/cryst10060441.

Al-Mamun, Md.R., Iqbal Rokon, Md. Z., Rahim, Md.A., Hossain, Md.I., Islam, Md.S., Ali, Md. R., Bacchu, M.S., Waizumi, H., Komeda, T., & Hossain Khan, M.Z. (2023). Enhanced photocatalytic activity of Cu and Ni-doped ZnO nanostructures: A comparative study of methyl orange dye degradation in aqueous solution. Heliyon, 9(6), e16506. https://doi.org/10.1016/j.heliyon.2023.e16506.

Ashwini, J., Aswathy, T.R., Rahul, A.B., Thara, G.M., & Nair, A.S. (2021). Synthesis and characterization of zinc oxide nanoparticles using Acacia caesia bark extract and its photocatalytic and antimicrobial activities. Catalysts, 11(12), 1507. https://doi.org/10.3390/catal11121507.

Bhuyan, T., Mishra, K., Khanuja, M., Prasad, R., & Varma, A. (2015). Biosynthesis of zinc oxide nanoparticles from Azadirachta indica for antibacterial and photocatalytic applications. Materials Science in Semiconductor Processing, 32, 55–61. https://doi.org/10.1016/j.mssp.2014.12.053.

Blažeka, D., Radičić, R., Maletić, D., Živković, S., Momčilović, M., & Krstulović, N. (2022). Enhancement of methylene blue photodegradation rate using laser synthesized Ag-doped ZnO nanoparticles. Nanomaterials, 12(15), 2677. https://doi.org/10.3390/nano12152677.

Bratovcic, A. (2019). Different applications of nanomaterials and their impact on the environment. International Journal of Material Science and Engineering, 5(1), 1–7. https://doi.org/10.14445/23948884/IJMSE-V5I1P101.

Cai, Z., Sun, Y., Liu, W., Pan, F., Sun, P., & Fu, J. (2017). An overview of nanomaterials applied for removing dyes from wastewater. Environmental Science and Pollution Research, 24(19), 15882–15904. https://doi.org/10.1007/s11356-017-9003-8.

Davar, F., Majedi, A., & Mirzaei, A. (2015). Green synthesis of zno nanoparticles and its application in the degradation of some dyes. Journal of the American Ceramic Society, 98(6), 1739–1746. https://doi.org/10.1111/jace.13467.

Fu, M., Li, Y., Wu, S., Lu, P., Liu, J., & Dong, F. (2011). Sol–gel preparation and enhanced photocatalytic performance of Cu-doped ZnO nanoparticles. Applied Surface Science, 258(4), 1587–1591. https://doi.org/10.1016/j.apsusc.2011.10.003.

Gaurav, A., Beura, R., Kumar, J.S., & Thangadurai, P. (2019). Study on the effect of copper ion doping in zinc oxide nanomaterials for photocatalytic applications. Materials Chemistry and Physics, 230, 162–171. https://doi.org/10.1016/j.matchemphys.2019.03.056.

Ghosh A., Kumari N. & Bhattachrjee A. (2015). Influence of Cu doping on structural, electrical and optical properties of ZnO. Pramana, 84(4), 621-635. https://doi.org/10.1007/s12043-014-0851-1.

Hussein, F. H., & Halbus, A. F. (2012). Rapid Decolorization of Cobalamin. International Journal of Photoenergy, 2012, 495435. https://doi.org/10.1155/2012/495435.

Ijaz, F., Shahid, S., Khan, S.A., Ahmad, W., & Zaman, S. (2017). Green synthesis of copper oxide nanoparticles using Abutilon indicum leaf extract: Antimicrobial, antioxidant and photocatalytic dye degradation activitie. Tropical Journal of Pharmaceutical Research, 16(4), 743. https://doi.org/10.4314/tjpr.v16i4.2.

Karthik, K.V., Raghu, A.V., Reddy, K.R., Ravishankar, R., Sangeeta, M., Shetti, N.P., & Reddy, C.V. (2022). Green synthesis of Cu-doped ZnO nanoparticles and its application for the photocatalytic degradation of hazardous organic pollutants. Chemosphere, 287, 132081. https://doi.org/10.1016/j.chemosphere.2021.132081.

Khalid, A., Ahmad, P., Khan, A., Muhammad, S., Khandaker, M.U., Alam, Md. M., Asim, M., Din, I.U., Chaudhary, R.G., Kumar, D., Sharma, R., Faruque, M.R.I., & Emran, T.B. (2022). Effect of Cu doping on ZnO nanoparticles as a photocatalyst for the removal of organic wastewater. Bioinorganic Chemistry and Applications, 2022, 1–12. https://doi.org/10.1155/2022/9459886.

Khan, I., Saeed, K., Zekker, I., Zhang, B., Hendi, A.H., Ahmad, A., Ahmad, S., Zada, N., Ahmad, H., Shah, L.A., Shah, T., & Khan, I. (2022). Review on methylene blue: its properties, uses, toxicity and photodegradation. Water, 14(2), 242. https://doi.org/10.3390/w14020242.

Khan, S. A., Noreen, F., Kanwal, S., Iqbal, A., & Hussain, G. (2018). Green synthesis of ZnO and Cu-doped ZnO nanoparticles from leaf extracts of Abutilon indicum, Clerodendrum infortunatum, Clerodendrum inerme and investigation of their biological and photocatalytic activities. Materials Science and Engineering: C, 82, 46–59. https://doi.org/10.1016/j.msec.2017.08.071.

Koutavarapu, R., Babu, B., Reddy, C.V., Reddy, I.N., Reddy, K.R., Rao, M.C., Aminabhavi, T. M., Cho, M., Kim, D., & Shim, J. (2020). ZnO nanosheets-decorated Bi2WO6 nanolayers as efficient photocatalysts for the removal of toxic environmental pollutants and photoelectrochemical solar water oxidation. Journal of Environmental Management, 265, 110504. https://doi.org/10.1016/j.jenvman.2020.110504

Kuriakose, S., Satpati, B., & Mohapatra, S. (2015). Highly efficient photocatalytic degradation of organic dyes by Cu doped ZnO nanostructures. Physical Chemistry Chemical Physics, 17(38), 25172–25181. https://doi.org/10.1039/C5CP01681A.

Malarkodi, C., Rajeshkumar, S., Paulkumar, K., Vanaja, M., Gnanajobitha, G., & Annadurai, G. (2014). Biosynthesis and Antimicrobial Activity of Semiconductor Nanoparticles against Oral Pathogens. Bioinorganic Chemistry and Applications, 2014, 347167. https://doi.org/10.1155/2014/347167.

Mali, S.C., Dhaka, A., Githala, C.K., & Trivedi, R. (2020). Green synthesis of copper nanoparticles using Celastrus paniculatus Willd. Leaf extract and their photocatalytic and antifungal properties. Biotechnology Reports, 27, e00518. https://doi.org/10.1016/j.btre.2020.e00518.

Modwi, A., Ghanem, M.A., Al-Mayouf, A.M., & Houas, A. (2018). Lowering energy band gap and enhancing photocatalytic properties of Cu/ZnO composite decorated by transition metals. Journal of Molecular Structure, 1173, 1–6. https://doi.org/10.1016/j.molstruc.2018.06.082.

Okamoto, K., Yamamoto, Y., Tanaka, H., Tanaka, M., & Itaya, A. (1985). Heterogeneous photocatalytic decomposition of phenol over TiO2 powder. Bulletin of the Chemical Society of Japan, 58(7), 2015–2022. https://doi.org/10.1246/bcsj.58.2015.

Ramsay, R.R., Dunford, C., & Gillman, P.K. (2007). Methylene blue and serotonin toxicity: Inhibition of monoamine oxidase A (MAO A) confirms a theoretical prediction. British Journal of Pharmacology, 152(6), 946. https://doi.org/10.1038/sj.bjp.0707430.

Rezapour, M., & Talebian, N. (2011). Comparison of structural, optical properties and photocatalytic activity of ZnO with different morphologies: Effect of synthesis methods and reaction media. Materials Chemistry and Physics, 129(1–2), 249–255. https://doi.org/10.1016/j.matchemphys.2011.04.012.

Sahu, S., Pahi, S., Sahu, J.K., Sahu, U.K., & Patel, R.K. (2020). Kendu (Diospyros melanoxylon Roxb) fruit peel activated carbon-an efficient bioadsorbent for methylene blue dye: Equilibrium, kinetic, and thermodynamic study. Environmental Science and Pollution Research, 27(18), 22579–22592. https://doi.org/10.1007/s11356-020-08561-2.

Sajjad, M., Ullah, I., Khan, M.I., Khan, J., Khan, M.Y., & Qureshi, M.T. (2018). Structural and optical properties of pure and copper doped zinc oxide nanoparticles. Results in Physics, 9, 1301–1309. https://doi.org/10.1016/j.rinp.2018.04.010.

Shah, A.A., Bhatti, M.A., Tahira, A., Chandio, A.D., Channa, I.A., Sahito, A.G., Chalangar, E., Willander, M., Nur, O., & Ibupoto, Z.H. (2020). Facile synthesis of copper doped ZnO nanorods for the efficient photo degradation of methylene blue and methyl orange. Ceramics International, 46(8), 9997–10005. https://doi.org/10.1016/j.ceramint.2019.12.024.

Shanmugam, V., & Jeyaperumal, K.S. (2018). Investigations of visible light driven Sn and Cu doped ZnO hybrid nanoparticles for photocatalytic performance and antibacterial activity. Applied Surface Science, 449, 617–630. https://doi.org/10.1016/j.apsusc.2017.11.167.

Suwanboon, S., Amornpitoksuk, P., Sukolrat, A., & Muensit, N. (2013). Optical and photocatalytic properties of La-doped ZnO nanoparticles prepared via precipitation and mechanical milling method. Ceramics International, 39(3), 2811–2819. https://doi.org/10.1016/j.ceramint.2012.09.050

Tee, S.Y., Ye, E., Pan, P.H., Lee, C. J.J., Hui, H.K., Zhang, S.-Y., Koh, L.D., Dong, Z., & Han, M.-Y. (2015). Fabrication of bimetallic Cu/Au nanotubes and their sensitive, selective, reproducible and reusable electrochemical sensing of glucose. Nanoscale, 7(25), 11190–11198. https://doi.org/10.1039/C5NR02399H.

Vallejo, W., Cantillo, A., Salazar, B., Diaz-Uribe, C., Ramos, W., Romero, E., & Hurtado, M. (2020). Comparative study of ZnO thin films doped with transition metals (Cu and Co) for methylene blue photodegradation under visible irradiation. Catalysts, 10(5), 528. https://doi.org/10.3390/catal10050528.

Viorica, G.P., Musat, V., Pimentel, A., Calmeiro, T.R., Carlos, E., Baroiu, L., Martins, R., & Fortunato, E. (2019). Hybrid (Ag)ZnO/Cs/PMMA nanocomposite thin films. Journal of Alloys and Compounds, 803, 922–933. https://doi.org/10.1016/j.jallcom.2019.06.373.

Xu, L., Zhou, Y., Wu, Z., Zheng, G., He, J., & Zhou, Y. (2017). Improved photocatalytic activity of nanocrystalline ZnO by coupling with CuO. Journal of Physics and Chemistry of Solids, 106, 29–36. https://doi.org/10.1016/j.jpcs.2017.03.001

Yusof A.S., Hassan Z. (2018). Fabrication and characterization of Cu doped ZnO filmsusinf RF reactive magnatron sputtering. Journal of Physics conference series, 1083(1), 012062 https://doi.org/10.1088/1742-6596/1083/1/012062.

Downloads

Published

2025-12-23

How to Cite

Pokhrel, P., & Nyachhyon Rajbhandari, A. (2025). Plant-Mediated Zinc Oxide Nanoparticle and Copper Doped Zinc Oxide Nanocomposite for Photocatalytic Degradation of Methylene Blue Dye. Journal of Institute of Science and Technology, 30(2), 115–125. https://doi.org/10.3126/jist.v30i2.84888

Issue

Section

Research Articles